Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.046
Filtrar
1.
Ultrason Sonochem ; 105: 106865, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38564909

RESUMO

To further enhance the application of nobiletin (an important active ingredient in Citrus fruits), we used ultrasonic homogenization-assisted antisolvent precipitation to create ultrafine particles of nobiletin (UPN). DMSO was used as the solvent, and deionized water was used as the antisolvent. When ultrasonication (670 W) and homogenization (16000 r/min) were synergistic, the solution concentration was 57 mg/mL, and the minimum particle size of UPN was 521.02 nm. The UPN samples outperformed the RN samples in terms of the inhibition of porcine pancreatic lipase, which was inhibited (by 500 mg/mL) by 68.41 % in the raw sample, 90.34 % in the ultrafine sample, and 83.59 % in the positive control, according to the data. Fourier transform infrared spectroscopy analysis revealed no chemical changes in the samples before or after preparation. However, the crystallinity of the processed ultrafine nobiletin particles decreased. Thus, this work offers significant relevance for applications in the realm of food chemistry and indirectly illustrates the expanded application potential of nobiletin.


Assuntos
Flavonas , Lipase , Tamanho da Partícula , Solventes , Lipase/metabolismo , Lipase/antagonistas & inibidores , Animais , Flavonas/química , Flavonas/farmacologia , Suínos , Solventes/química , Pâncreas/enzimologia , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Sonicação , alfa-Glucosidases/metabolismo , Precipitação Química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química
2.
Molecules ; 29(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38611918

RESUMO

Fever is a serious condition that can lead to various consequences ranging from prolonged illness to death. Tetrastigma hemsleyanum Diels et Gilg (T. hemsleyanum) has been used for centuries to treat fever, but the specific chemicals responsible for its antipyretic effects are not well understood. This study aimed to isolate and identify the chemicals with antipyretic bioactivity in T. hemsleyanum extracts and to provide an explanation for the use of T. hemsleyanum as a Chinese herbal medicine for fever treatment. Our results demonstrate that kaempferol 3-rutinoside (K3OR) could be successfully isolated and purified from the roots of T. hemsleyanum. Furthermore, K3OR exhibited a significant reduction in rectal temperature in a mouse model of fever. Notably, a 4 µM concentration of K3OR showed more effective antipyretic effects than ibuprofen and acetaminophen. To explore the underlying mechanism, we conducted an RNA sequencing analysis, which revealed that PXN may act as a key regulator in the fever process induced by lipopolysaccharide (LPS). In the mouse model of fever, K3OR significantly promoted the secretion of IL-6 and TNF-α during the early stage in the LPS-treated group. However, during the middle to late stages, K3OR facilitated the elimination of IL-6 and TNF-α in the LPS-treated group. Overall, our study successfully identified the chemicals responsible for the antipyretic bioactivity in T. hemsleyanum extracts, and it answered the question as to why T. hemsleyanum is used as a traditional Chinese herbal medicine for treating fever. These findings contribute to a better understanding of the therapeutic potential of T. hemsleyanum in managing fever, and they provide a basis for further research and development in this field.


Assuntos
Antocianinas , Antipiréticos , Medicamentos de Ervas Chinesas , Flavonas , Animais , Camundongos , Temperatura Corporal , Fator de Necrose Tumoral alfa/genética , Antipiréticos/farmacologia , Antipiréticos/uso terapêutico , Interleucina-6 , Quempferóis/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Lipopolissacarídeos , Febre/tratamento farmacológico , Flavonas/farmacologia , Flavonas/uso terapêutico , Modelos Animais de Doenças
3.
J Ethnopharmacol ; 328: 118021, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38492793

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Prinsepia utilis Royle, also known as the Anas fruit, is a unique perennial woody oil plant from Yunnan Province, China. In the ancient texts of Dongba sutras and Yunnan Southern Materia Medica, it has been documented that the local Naxi, Tibetan, and Mosuo communities extensively utilize the root and leaf fruits of green thorns for various purposes. These include treating mild-to-moderate specific dermatitis, moisturising the skin, providing protection against UV damage, aiding childbirth in pregnant women, safeguarding stomach health, reducing the risk of arteriosclerosis, and delaying aging. AIM OF THE STUDY: In this study, leftover residues from oil extraction were efficiently reused, and flavonoids were identified during subsequent extraction and separation processes. The anti-senescent effects of flavonoids in P. utilis Royle have not been systematically studied. Therefore, the objective of this study was to explore the anti-senescent properties of the flavonoids obtained from P. utilis Royle. METHODS: First, HPLC and other analytical techniques were used to identify the components of the P. utilis Royle flavonoid (PURF). Next, DPPH, hydroxyl radicals, superoxide anion O2-, collagenase, and elastase were initially detected using in vitro biochemical assays. To examine its antioxidant properties, a zebrafish model was used, and to confirm its anti-senescent effects, a d-galactose-induced mouse aging model was employed. The anti-senescent mechanism of PURF was examined using a natural senescence HFF model. Furthermore, the anti-senescent target was confirmed using a 3D full T-Skin™ model. RESULTS: In vitro biochemical assays demonstrated that flavones exhibited potent antioxidant activity and anti-senescent potential by inhibiting DPPH, hydroxyl radicals, superoxide anion O2-, collagenase, and elastase. It significantly enhanced the antioxidant effect on zebrafish while suppressing ROS and inflammatory injury, up-regulating COL1A1, COL3A1, AMPK, and mTOR gene expression and down-regulating MMP-9, TGF-ß, p21, and p16 gene expression suggesting its potential anti-senescent ability. Findings from the D-galactose-induced aging mouse model showed that PURF greatly increased SOD levels, while simultaneously decreasing HYP and MDA levels. In addition, when PURF was given to the HFF cell and 3D full T-Skin™ model, consistent trends were observed in gene and protein expression, with up-regulation of COL1A1, COL3A1, AMPK, and mTOR genes and down-regulation of TGF-ß, MMP-1, MMP-9, p21, and p16 genes. Therefore, these preliminary findings indicate that flavones can modulate AMPK/mTOR/TGF-ß signalling pathways to exert its influence. CONCLUSION: The kernel residue of natural P. utilis Royle oil extracted from Yunnan province was previously considered agricultural waste, but we successfully extracted and isolated its flavonoid components. Our preliminary studies demonstrated its potential as an environmentally friendly anti-senescent raw material.


Assuntos
Flavonas , Gravidez , Animais , Camundongos , Humanos , Feminino , Flavonas/farmacologia , Metaloproteinase 9 da Matriz , Peixe-Zebra , Superóxidos , Galactose , Proteínas Quinases Ativadas por AMP , China , Antioxidantes/farmacologia , Flavonoides/farmacologia , Sementes , Elastase Pancreática , Fator de Crescimento Transformador beta , Serina-Treonina Quinases TOR
4.
PeerJ ; 12: e16826, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38313021

RESUMO

This study aimed to investigate the potential of patuletin, a rare natural flavonoid, as a virulence and LasR inhibitor against Pseudomonas aeruginosa. Various computational studies were utilized to explore the binding of Patuletin and LasR at a molecular level. Molecular docking revealed that Patuletin strongly interacted with the active pocket of LasR, with a high binding affinity value of -20.96 kcal/mol. Further molecular dynamics simulations, molecular mechanics generalized Born surface area (MM/GBSA), protein-ligand interaction profile (PLIP), and essential dynamics analyses confirmed the stability of the patuletin-LasR complex, and no significant structural changes were observed in the LasR protein upon binding. Key amino acids involved in binding were identified, along with a free energy value of -26.9 kcal/mol. In vitro assays were performed to assess patuletin's effects on P. aeruginosa. At a sub-inhibitory concentration (1/4 MIC), patuletin significantly reduced biofilm formation by 48% and 42%, decreased pyocyanin production by 24% and 14%, and decreased proteolytic activities by 42% and 20% in P. aeruginosa isolate ATCC 27853 (PA27853) and P. aeruginosa clinical isolate (PA1), respectively. In summary, this study demonstrated that patuletin effectively inhibited LasR activity in silico and attenuated virulence factors in vitro, including biofilm formation, pyocyanin production, and proteolytic activity. These findings suggest that patuletin holds promise as a potential therapeutic agent in combination with antibiotics to combat antibiotic-tolerant P. aeruginosa infections.


Assuntos
Biofilmes , Cromonas , Flavonas , Virulência , Pseudomonas aeruginosa , Percepção de Quorum , Simulação de Acoplamento Molecular , Piocianina/metabolismo , Flavonas/farmacologia
5.
Biomed Pharmacother ; 173: 116322, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38401524

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases and is emerging as one of the fastest-growing causes of liver-related deaths worldwide. It is necessary to find strategies to effectively prevent and treat NAFLD, as no definitive drug has been approved. Nobiletin (NOB) is the critical active ingredient of Chinese herbal medicines such as Citrus aurantium and Citri Reticulatae Pericarpium, which have anti-inflammatory, antioxidant, lipid regulating, and insulin resistance regulating effects. Numerous studies have demonstrated that NOB can prevent and treat the onset and progression of NAFLD. In this review, the mechanisms of NOB for treating NAFLD have been summarized, hoping to provide a basis for subsequent studies of NOB and to provide a research ground for the development of therapeutic drugs for NAFLD.


Assuntos
Medicamentos de Ervas Chinesas , Flavonas , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Flavonas/farmacologia , Flavonas/uso terapêutico , Fígado , Medicamentos de Ervas Chinesas/farmacologia
6.
Int J Biol Macromol ; 261(Pt 1): 129745, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38286378

RESUMO

Efficient detoxification is the key factor for phytophagous insect to adapt to phytochemicals. However, the role of uridine diphosphate (UDP)-glycosyltransferases (UGTs) in insect anti-defense to phytochemical flavone is largely unknown. In this study, 52 UGT genes were identified in Spodoptera litura and they presented evident gene duplication. UGT played a crucial part in larval tolerance to flavone because the enzyme activity and transcriptional level of 77 % UGT members were remarkably upregulated by flavone administration and suppression of UGT enzyme activity and gene expressions significantly increased larval susceptibility to flavone. Bacteria coexpressing UGTs had high survival rates under flavone treatment and flavone was dramatically metabolized by UGT recombinant cells, which indicated the involvement of UGTs in flavone detoxification. What's more, ecdysone pathway was activated by flavone. Topical application of 20-hydroxyecdysone highly upregulated UGT enzyme activity and more than half of UGT expressions. The effects were opposite when ecdysone receptor (EcR) and ultraspiracle (USP)-mediated ecdysone signaling pathway was inhibited. Furtherly, promoter reporter assays of 5 UGT genes showed that their transcription activities were notably increased by cotransfection with EcR and USP. In consequence, this study suggested that UGTs were involved in flavone detoxification and their transcriptional expressions were regulated by ecdysone pathway.


Assuntos
Flavonas , Glicosiltransferases , Animais , Glicosiltransferases/metabolismo , Difosfato de Uridina , Spodoptera/genética , Ecdisona , Insetos/metabolismo , Compostos Fitoquímicos , Flavonas/farmacologia
7.
Life Sci ; 340: 122424, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38242497

RESUMO

Inflammatory Bowel Disease (IBD) is a chronic and relapsing inflammatory condition characterized by severe symptoms such as diarrhea, fatigue, and weight loss. Growing evidence underscores the direct involvement of the nuclear factor-erythroid 2-related factor 2 (NRF2) in the development and progression of IBD, along with its associated complications, including colorectal cancer. The NRF2 pathway plays a crucial role in cellular responses to oxidative stress, and dysregulation of this pathway has been implicated in IBD. Flavones, a significant subclass of flavonoids, have shown pharmacological impacts in various diseases including IBD, through the NRF2 signaling pathway. In this study, we conducted a screening of compounds with a flavone structure and identified NJK15003 as a promising NRF2 activator. NJK15003 demonstrated potent NRF2 activation, as evidenced by the upregulation of downstream proteins, promoter activation, and NRF2 nuclear translocation in IBD cellular models. Treatment with NJK15003 effectively restored the protein levels of tight junctions in cells treated with dextran sodium sulfate (DSS) and in DSS-treated mice, suggesting its potential to protect cells from barrier integrity disruption in IBD. In DSS-treated mice, the administration of NJK15003 resulted in the prevention of body weight loss, a reduction in colon length shortening, and a decrease in the disease activity index. Furthermore, NJK15003 treatment substantially alleviated inflammatory responses and apoptotic cell death in the colon of DSS-treated mice. Taken together, this study proposes the potential utility of NRF2-activating flavone compounds, exemplified by NJK15003, for the treatment of IBD.


Assuntos
Colite , Flavonas , Doenças Inflamatórias Intestinais , Sulfatos , Camundongos , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Dextranos/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Flavonas/farmacologia , Flavonas/uso terapêutico , Doenças Inflamatórias Intestinais/induzido quimicamente , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/metabolismo , Sulfato de Dextrana/toxicidade , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Colo/metabolismo
8.
Cytokine ; 175: 156480, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38232644

RESUMO

Cutaneous squamous cell carcinoma (CSCC) is the second most common malignant skin tumor and significantly affects patients' quality of life and health. The Janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3) pathway activation is involved in CSCC development. Radix Tetrastigma hemsleyani flavone (RTHF) is an active Radix Tetrastigma extract (RTE), which was recently reported to have promising inhibitory effects on CSCC. However, the underlying functional mechanisms of this inhibition remain unknown. In the present study, A431 cells or SCL-1 cells were incubated with 1, 5, and 10 mg/mL RTHF for 48 h, respectively. A significantly increased wound closure rate, decreased number of migrated and invaded cells, decreased colony number, and elevated apoptotic rate were observed after treatment with 1, 5, and 10 mg/mL RTHF. Furthermore, after incubation with RTHF, p-JAK1/JAK1, p-JAK2/JAK2, and p-STAT3/STAT3 levels were drastically reduced. An A431 xenograft model was constructed, followed by oral administration of 15, 30, or 60 mg/kg RTHF for 21 consecutive days. A significantly lower increase in tumor volume and reduced tumor weight were observed in all RTHF-treated groups. In addition, JAK/STAT3 signaling was drastically repressed in tumor tissues. Collectively, RTHF inhibited CSCC progression, which may be associated with JAK/STAT3 pathway inactivation.


Assuntos
Carcinoma de Células Escamosas , Flavonas , Neoplasias Cutâneas , Humanos , Carcinoma de Células Escamosas/patologia , Janus Quinases/metabolismo , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Fator de Transcrição STAT3/metabolismo , Qualidade de Vida , Proliferação de Células , Linhagem Celular Tumoral , Flavonas/farmacologia , Flavonas/uso terapêutico , Apoptose
9.
Neurochem Res ; 49(4): 980-997, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38170385

RESUMO

Diabetic neuropathic pain is one of the most devasting disorders of peripheral nervous system. The loss of GABAergic inhibition is associated with the development of painful diabetic neuropathy. The current study evaluated the potential of 3-Hydroxy-2-methoxy-6-methyl flavone (3-OH-2'MeO6MF), to ameliorate peripheral neuropathic pain using an STZ-induced hyperglycemia rat model. The pain threshold was assessed by tail flick, cold, mechanical allodynia, and formalin test on days 0, 14, 21, and 28 after STZ administration accompanied by evaluation of several biochemical parameters. Administration of 3-OH-2'-MeO6MF (1,10, 30, and 100 mg/kg, i.p) significantly enhanced the tail withdrawal threshold in tail-flick and tail cold allodynia tests. 3-OH-2'-MeO6MF also increased the paw withdrawal threshold in mechanical allodynia and decreased paw licking time in the formalin test. Additionally, 3-OH-2'-MeO6MF also attenuated the increase in concentrations of myeloperoxidase (MPO), thiobarbituric acid reactive substances (TBARS), nitrite, TNF-α, and IL 6 along with increases in glutathione (GSH). Pretreatment of pentylenetetrazole (PTZ) (40 mg/kg, i.p.) abolished the antinociceptive effect of 3-OH-2'-MeO6MF in mechanical allodynia. Besides, the STZ-induced alterations in the GABA concentration and GABA transaminase activity attenuated by 3-OH-2'-MeO6MF treatment suggest GABAergic mechanisms. Molecular docking also authenticates the involvement of α2ß2γ2L GABA-A receptors and GABA-T enzyme in the antinociceptive activities of 3-OH-2'-MeO6MF.


Assuntos
Diabetes Mellitus , Neuropatias Diabéticas , Flavonas , Neuralgia , Ratos , Animais , Hiperalgesia/tratamento farmacológico , Neuropatias Diabéticas/tratamento farmacológico , Estreptozocina , Simulação de Acoplamento Molecular , Neuralgia/induzido quimicamente , Neuralgia/tratamento farmacológico , Neuralgia/complicações , Analgésicos/farmacologia , Ácido gama-Aminobutírico/farmacologia , Flavonas/farmacologia , Flavonas/uso terapêutico , Biomarcadores
10.
Nat Prod Res ; 38(6): 994-1001, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37157866

RESUMO

Phytochemical study on the rhizomes of Kaempferia parviflora led to the isolation of twenty-three compounds including six phenolic glycosides (1-6), thirteen flavones (7-19), and five phenolic compounds (20-23). Of these, the new compounds were determined to be 2,4-dihydroxy-6-methoxyacetophenone-2-ß-D-apiofuranosyl-(1→6)-ß-D-glucopyranoside (1), 2-hydroxy-4-propionyl-phenyl O-ß-D-glucopyranoside (2), and 4-hydroxy-3,5-dimethoxyacetophenone 8-O-α-L-rhamnopyranosyl-(1→6)-ß-D-glucopyranoside (3) and named as kaempanosides A-C, respectively. Their chemical structures were established based on HR-ESI-MS, 1D and 2D NMR spectra. All compounds 1-23 exhibited acetylcholinesterase inhibitory activity with IC50 values ranging from 57.76 to 253.31 µM.


Assuntos
Flavonas , Zingiberaceae , Acetilcolinesterase/análise , Rizoma/química , Flavonas/farmacologia , Extratos Vegetais/química , Glicosídeos/química , Zingiberaceae/química
11.
Phytother Res ; 38(2): 880-911, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38088265

RESUMO

Current pharmaceutical research is energetically excavating the pharmacotherapeutic role of herb-derived ingredients in multiple malignancies' targeting. Luteolin is one of the major phytochemical components that exist in various traditional Chinese medicine or medical herbs. Mounting evidence reveals that this phytoconstituent endows prominent therapeutic actions on diverse malignancies, with the underlying mechanisms, combined medication strategy, and pharmacokinetics elusive. Additionally, the clinical trial and pharmaceutical investigation of luteolin remain to be systematically delineated. The present review aimed to comprehensively summarize the updated information with regard to the anticancer mechanism, combined medication strategies, pharmacokinetics, clinical trials, and pharmaceutical researches of luteolin. The survey corroborates that luteolin executes multiple anticancer effects mainly by dampening proliferation and invasion, spurring apoptosis, intercepting cell cycle, regulating autophagy and immune, inhibiting inflammatory response, inducing ferroptosis, and pyroptosis, as well as epigenetic modification, and so on. Luteolin can be applied in combination with numerous clinical anticarcinogens and natural ingredients to synergistically enhance the therapeutic efficacy of malignancies while reducing adverse reactions. For pharmacokinetics, luteolin has an unfavorable oral bioavailability, it mainly persists in plasma as glucuronides and sulfate-conjugates after being metabolized, and is regarded as potent inhibitors of OATP1B1 and OATP2B1, which may be messed with the pharmacokinetic interactions of miscellaneous bioactive substances in vivo. Besides, pharmaceutical innovation of luteolin with leading-edge drug delivery systems such as host-guest complexes, nanoparticles, liposomes, nanoemulsion, microspheres, and hydrogels are beneficial to the exploitation of luteolin-based products. Moreover, some registered clinical trials on luteolin are being carried out, yet clinical research on anticancer effects should be continuously promoted.


Assuntos
Flavonas , Neoplasias , Humanos , Luteolina/farmacologia , Luteolina/uso terapêutico , Preparações Farmacêuticas , Flavonas/farmacologia , Flavonas/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Disponibilidade Biológica
12.
Bioorg Med Chem Lett ; 98: 129577, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38065293

RESUMO

Transient receptor potential vanilloid 3 (TRPV3) channel is a temperature-sensitive and Ca2+-permeable nonselective cation channel, which is abundantly expressed in skin keratinocyte and plays an important role in skin homeostasis and repair. However, only a few TRPV3 inhibitors were reported. Few selective and potent modulators of the TRPV3 channel have hindered the progress of the investigation and clinical application. TRPV3 channel research still faces challenges and requires the new inhibitors. Flavonoids are a kind of natural compounds with various biological and pharmacological activities including anti-inflammatory and anti allergic effects, which is associated with some physiological effects mediated by TRPV3 channel. Herein, our group designed and synthesized a range of flavone derivatives, and investigated their inhibitory properties on the human TRPV3 channel by electrophysiology technique. Then, we identified a new potent TRPV3 antagonist 2d with IC50 of 0.62 µM. It also showed good selectivity on TRPV1, TRPV4, TRPA1 and TRPM8.


Assuntos
Flavonas , Canais de Potencial de Receptor Transitório , Humanos , Flavonas/farmacologia , Queratinócitos , Temperatura , Canais de Potencial de Receptor Transitório/antagonistas & inibidores , Canais de Cátion TRPV
13.
Neurosci Lett ; 818: 137559, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37984484

RESUMO

BACKGROUND: Sevoflurane, one of the most commonly used general anesthetics for pediatric anesthesia, has recently gained significant attention in both preclinical and clinical settings due to its potential neurotoxicity in the developing brain. Tau phosphorylation, induced by sevoflurane, is recognized as one of the major causes of neurotoxicity. 7,8-dihydroxyflavone (DHF), a TrkB receptor agonist, has been reported to exhibit potential neuroprotective effects against tauopathies. In this study, our objective was to investigate whether DHF could provide neuroprotective effects against sevoflurane-induced neurotoxicity and explore the underlying molecular mechanisms. METHODS: Six-day-old mice were subjected to 2 h of anesthesia with 3 % sevoflurane, with or without pretreatment of DHF (5 mg/kg/day, i.p.) for 3 consecutive days. Autonomic motor ability was assessed by open-field test, while learning and memory abilities were evaluated by the fear conditioning test. Western blotting was conducted to measure the levels of t-TrkB, p-TrkB, tau, and phosphorylated tau. Additionally, a co-immunoprecipitation assay was performed to investigate the interaction between O-GlcNAcylation and tau. RESULTS: Repeated neonatal sevoflurane exposures resulted in reduced freezing time during the context and cued fear conditioning tests in adulthood. However, pretreatment with DHF restored the freezing time to the level of the control group, indicating that DHF effectively alleviated cognitive impairments induced by neonatal sevoflurane exposure. We also observed that repeated neonatal sevoflurane exposures increased tau phosphorylation while decreasing tau O-GlcNAcylation. However, DHF pretreatment rebalanced the tau O-GlcNAcylation/phosphorylation ratio by enhancing the interaction between tau and O-GlcNAcylation. CONCLUSION: Our findings demonstrate that DHF effectively ameliorates sevoflurane-induced cognitive impairment in developing mice by restoring the balance between tau O-GlcNAcylation and phosphorylation. Therefore, this study suggests that DHF has the potential to be a therapeutic agent for treating cognitive impairment associated with anesthetics, such as sevoflurane.


Assuntos
Disfunção Cognitiva , Flavonas , Fármacos Neuroprotetores , Humanos , Criança , Animais , Camundongos , Sevoflurano , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Flavonas/farmacologia , Flavonas/uso terapêutico , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico
14.
Life Sci ; 338: 122362, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38141855

RESUMO

AIMS: Endoplasmic reticulum stress (ERS) with aberrant mitochondrial-ER contact (MERC), mitophagy, and apoptosis are interconnected determinants in neurodegenerative diseases. Previously, we proved the potential of Morin hydrate (MH), a potent antioxidant flavonoid, to mitigate Huntington's disease (HD)-3-nitropropionic acid (3-NP) model by modulating glutamate/calpain/Kidins220/BDNF trajectory. Extending our work, we aimed to evaluate its impact on combating the ERS/MERC, mitophagy, and apoptosis. METHODS: Rats were subjected to 3-NP for 14 days and post-treated with MH and/or the ERS inducer WAG-4S for 7 days. Disease progression was assessed by gross inspection and striatal biochemical, histopathological, immunohistochemical, and transmission electron microscopical (TEM) examinations. A molecular docking study was attained to explore MH binding to mTOR, JNK, the kinase domain of IRE1-α, and IP3R. KEY FINDINGS: MH decreased weight loss and motor dysfunction using open field and rotarod tests. It halted HD degenerative striatal neurons and nucleus/mitochondria ultra-microscopic alterations reflecting neuroprotection. Mechanistically, MH deactivated striatal mTOR/IRE1-α/XBP1s&JNK/IP3R, PINK1/Ubiquitin/Mfn2, and cytochrome c/caspase-3 signaling pathways, besides enhancing p-PGC-1α and p-VDAC1. WAG-4S was able to ameliorate all effects initiated by MH to different extents. Molecular docking simulations revealed promising binding patterns of MH and hence its potential inhibition of the studied proteins, especially mTOR, IP3R, and JNK. SIGNIFICANCE: MH alleviated HD-associated ERS, MERC, mitophagy, and apoptosis. This is mainly achieved by combating the mTOR/IRE1-α signaling, IP3R/VDAC hub, PINK1/Ubiquitin/Mfn2, and cytochrome c/caspase 3 axis to be worsened by WAG-4S. Molecular docking simulations showed the promising binding of MH to mTOR and JNK as novel identified targets.


Assuntos
Flavonas , Doença de Huntington , Mitofagia , Animais , Ratos , Apoptose , Citocromos c , Flavonas/farmacologia , Doença de Huntington/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Proteínas de Membrana , Simulação de Acoplamento Molecular , Fosfoproteínas , Proteínas Serina-Treonina Quinases/metabolismo , Serina-Treonina Quinases TOR , Ubiquitinas/metabolismo
15.
Sci Rep ; 13(1): 22548, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110428

RESUMO

Overexpression of NorA efflux pumps plays a pivotal role in the multidrug-resistance mechanism in S. aureus. Here, we investigated the activities of prenylated isoflavonoids, present in the legume plant family (Fabaceae), as natural efflux pump inhibitors (EPIs) in fluoroquinolone-resistant S. aureus. We found that four prenylated isoflavonoids, namely neobavaisoflavone, glabrene, glyceollin I, and glyceollin III, showed efflux pump inhibition in the norA overexpressing S. aureus. At sub-inhibitory concentrations, neobavaisoflavone (6.25 µg/mL, 19 µM) and glabrene (12.5 µg/mL, 39 µM), showed up to 6 times more Eth accumulation in norA overexpressing S. aureus than in the control. In addition, these two compounds boosted the MIC of fluoroquinolones up to eightfold. No fluoroquinolone potentiation was observed with these isoflavonoids in the norA knockout strain, indicating NorA as the main target of these potential EPIs. In comparison to the reported NorA EPI reserpine, neobavaisoflavone showed similar potentiation of fluoroquinolone activity at 10 µM, higher Eth accumulation, and less cytotoxicity. Neobavaisoflavone and glabrene did not exhibit membrane permeabilization effects or cytotoxicity on Caco-2 cells. In conclusion, our findings suggest that the prenylated isoflavonoids neobavaisoflavone and glabrene are promising phytochemicals that could be developed as antimicrobials and resistance-modifying agents to treat fluoroquinolone-resistant S. aureus strains.


Assuntos
Fabaceae , Flavonas , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/química , Ciprofloxacina/farmacologia , Staphylococcus aureus Resistente à Meticilina/metabolismo , Fabaceae/metabolismo , Células CACO-2 , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Fluoroquinolonas/farmacologia , Flavonas/farmacologia , Proteínas de Bactérias/metabolismo , Testes de Sensibilidade Microbiana
16.
Chem Res Toxicol ; 36(12): 1973-1979, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37963190

RESUMO

As a potential means for smoking cessation and consequently prevention of smoking-related diseases and mortality, in this study, our goal was to investigate the inhibition of nicotine metabolism by P450 2A6. Smoking is the main cause of many diseases and disabilities and harms nearly every organ of the body. As reported by the Centers for Disease Control and Prevention (CDC), more than 16 million Americans are living with diseases caused by smoking. On average, the life expectancy of a smoker is about 10 years less than a nonsmoker. Smoking cessation can substantially reduce the incidence of smoking-related diseases, including cancer. At least, 70 of the more than 7000 cigarette smoke components, including polycyclic aromatic hydrocarbons, N-nitrosamines, and aromatic amines, are known carcinogens. Nicotine is the compound responsible for the addictive and psychopharmacological effects of tobacco. Cytochrome P450 enzymes are responsible for the phase I metabolism of many tobacco components, including nicotine. Nicotine is mainly metabolized by cytochrome P450s 2A6 and 2A13 to cotinine. This metabolism decreases the amount of available nicotine in the bloodstream, leading to increased smoking behavior and thus exposure to tobacco toxicants and carcinogens. Here, we report the syntheses and P450 2A6 inhibitory activities of a number of new flavone-based esters and acids. Three of the flavone derivatives studied were found to be potent competitive inhibitors of the enzyme. Docking studies were used to determine the possible mechanisms of the activity of these inhibitors.


Assuntos
Flavonas , Nicotina , Humanos , Nicotina/farmacologia , Nicotina/metabolismo , Citocromo P-450 CYP2A6/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Carcinógenos/metabolismo , Flavonas/farmacologia
17.
Biomed Pharmacother ; 169: 115899, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37984306

RESUMO

As a traditional Chinese medicine, Huangkui capsule (HKC) has been used to treat patients with kidney diseases, including diabetic nephropathy (DN). We have recently demonstrated that HKC could re-regulate the activities of solute carriers (SLC)s in proximal and distal convoluted tubules of kidneys in regression of the development of DN. The main active chemical constituents of HKC are the flavones of Abelmoschus manihot (L.). The current study aims to further evaluate the efficacy of total flavones of A. manihot (TFA) in the regression of DN by analyzing SLC activities in proximal and distal convoluted tubules of kidneys. TFA (0.076 g/kg/d) or vehicle was administered in db/db mice, the animal model of type 2 diabetes and DN, daily via oral gavage for four weeks. Blood glucose levels and urinary albumin-to-creatinine ratio (UACR) were measured and used for the determination of T2D and DN. Ten SLCs, including slc2a2, slc4A1, slc5a2, slc5A3, slc5a8, slc6a20, slc27a2, slc12a3, slc34a1 and slc38a2 were highly expressed in proximal and distinct convoluted tubules of kidneys. Their expression at mRNA and protein levels before and after TFA treatment were analyzed with real-time RT-PCR and immunohistochemistry. Data showed that UACR in the db/db mice after TFA treatment was significantly decreased. Compared with the group of non-diabetic control, slc2a2, slc4A1, slc5a2, slc5A3, slc5a8, slc6a20, slc27a2, slc12a3, slc34a1 and slc38a2 in the group of DN were down-regulated but up-regulated after TFA treatment. Further analyses of whole kidney sections indicated that the numbers and structures of the nephron in db/db mice was increased and improved after TFA treatment. Thereby, the current study provides further evidence that the flavones in A. manihot have pharmacological effects on the treatment of DN by improving the biological function of SLCs in kidneys.


Assuntos
Abelmoschus , Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Flavonas , Humanos , Ratos , Camundongos , Animais , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/metabolismo , Abelmoschus/química , Flavonas/farmacologia , Flavonas/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Ratos Sprague-Dawley , Células Epiteliais
18.
Eur J Med Res ; 28(1): 485, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932838

RESUMO

In recent years, the role of nobiletin in neuronal disorders has received extensive attention. However, the study of nobiletin in the peripheral nervous system is limited. Nobiletin, as a compound with high fat solubility, high bioavailability and low toxicity, has been extensively studied. Accumulating scientific evidence has shown that nobiletin has a variety of biological functions in the nervous system, such as inhibiting the expression of inflammatory factors, reducing the neurotoxic response, improving the antioxidant capacity, promoting the survival of nerve cells, promoting axon growth, reducing blood‒brain barrier permeability, reducing brain oedema, promoting cAMP response element binding protein expression, improving memory, and promoting mild depolarization of nerve cell mitochondria to improve antioxidative stress capacity. Accumulating studies have shown that nobiletin also protects enteric nervous system, spinal cord and sciatic nerve. To explore the new therapeutic potential of nobiletin in the nervous system, recent and relevant research progress is reviewed in this article. This will provide a new research idea for nobiletin in the nervous system.


Assuntos
Flavonas , Doenças do Sistema Nervoso Periférico , Humanos , Flavonas/química , Flavonas/farmacologia , Antioxidantes , Estresse Oxidativo
19.
J Enzyme Inhib Med Chem ; 38(1): 2276665, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37919954

RESUMO

Structural tailoring of the flavone framework (position 7) via organopalladium-catalyzed C-C bond formation was attempted in this study. The impact of substituents with varied electronic effects (phenyl ring, position 2 of the benzopyran scaffold) on the antitumor properties was also assessed. Resultantly, the efforts yielded a furyl arm bearing benzopyran possessing a 4-fluoro phenyl ring (position 2) (14) that manifested a magnificent antitumor profile against the Ishikawa cell lines mediated through dual inhibition of PARP and tubulin [(IC50 (PARP1) = 74 nM, IC50 (PARP2) = 109 nM) and tubulin (IC50 = 1.4 µM)]. Further investigations confirmed the ability of 14 to induce apoptosis as well as autophagy and cause cell cycle arrest at the G2/M phase. Overall, the outcome of the study culminated in a tractable dual PARP-tubulin inhibitor endowed with an impressive activity profile against endometrial cancer.


Assuntos
Antineoplásicos , Neoplasias do Endométrio , Flavonas , Humanos , Feminino , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/química , Tubulina (Proteína)/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Antineoplásicos/farmacologia , Antineoplásicos/química , Apoptose , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/patologia , Flavonas/farmacologia , Benzopiranos , Proliferação de Células
20.
Zhongguo Zhong Yao Za Zhi ; 48(15): 4137-4146, 2023 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-37802782

RESUMO

Previous studies have shown that high blood glucose-induced chronic microinflammation can cause inflammatory podocyte injury in patients with diabetic kidney disease(DKD). Therein, necroptosis is a new form of podocyte death that is closely associated with renal fibrosis(RF). To explore the effects and mechanisms in vivo of total flavones of Abelmoschus manihot(TFA), an extract from traditional Chinese herbal medicine Abelmoschus manihot for treating kidney diseases, on podocyte necroptosis and RF in DKD, and to further reveal its scientific connotation with multi-pathway and multi-target, the authors randomly divided all rats into four groups: a namely normal group, a model group, a TFA group and a rapamycin(RAP) group. After the modified DKD rat models were successfully established, four group rats were given double-distilled water, TFA suspension and RAP suspension, respectively by gavage every day. At the end of the 4th week of drug treatment, all rats were sacrificed, and the samples of their urine, blood and kidneys were collected. And then, the various indicators related to podocyte necroptosis and RF in the DKD model rats were observed, detected and analyzed, respectively. The results indicated that, general condition, body weight(BW), serum creatinine(Scr), urinary albumin(UAlb), and kidney hypertrophy index(KHI) in these modified DKD model rats were both improved by TFA and RAP. Indicators of RF, including glomerular histomorphological characteristics, fibronectin(FN) and collagen type Ⅰ(collagen Ⅰ) staining extent in glomeruli, as well as the protein expression levels of FN, collagen Ⅰ, transforming growth factor-ß1(TGF-ß1) and Smad2/3 in the kidneys were improved respectively by TFA and RAP. Podocyte damage, including foot process form and the protein expression levels of podocin and CD2AP in the kidneys was improved by TFA and RAP. In addition, tumor necrosis factor-α(TNF-α)-mediated podocyte necroptosis in the kidneys, including the morphological characteristics of podocyte necroptosis, the extent and levels of the protein expression of TNF-α and phosphorylated mixed lineage kinase domain like pseudokinase(p-MLKL) was improved respectively by TFA and RAP. Among them, RAP had the better effect on p-MLKL. More importantly, the activation of the receptor interacting serine/threonine protein kinase 1(RIPK1)/RIPK3/MLKL signaling axis in the kidneys, including the expression levels of its key signaling molecules, such as phosphorylated receptor interacting serine/threonine protein kinase 1(p-RIPK1), p-RIPK3, p-MLKL and cysteinyl aspartate specific proteinase-8(caspase-8) was improved respectively by TFA and RAP. Among them, the effect of TFA on p-RIPK1 was superior. On the whole, in this study, the authors demonstrated that TFA alleviates podocyte necroptosis and RF in DKD through inhibiting the activation of the TNF-α-mediated RIPK1/RIPK3/MLKL signaling axis in diabetic kidneys. The authors' findings provide new pharmacological evidence to reveal the scientific connotation of TFA in treating RF in DKD in more depth.


Assuntos
Abelmoschus , Diabetes Mellitus , Nefropatias Diabéticas , Flavonas , Podócitos , Humanos , Ratos , Animais , Nefropatias Diabéticas/tratamento farmacológico , Flavonas/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Necroptose , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Fibrose , Treonina/farmacologia , Colágeno/metabolismo , Serina/farmacologia , Diabetes Mellitus/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...